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INTRODUCTION 

The living systems genetic science is 

encapsulated in the genome sequences i.e., 

their DNA (deoxyribonucleic acid). (Watson 

& Crick, 1993). A larger portion of these 

genomic sequences codes for a large number 

of functional proteins which carries out many 

functional tasks in all living organisms. The 

information stored in these DNA sequences 

are made available by transcribing these genes 

into mRNAs (messenger RNAs) by the 

process of transcription which is then 

translated into amino acid sequences which 

encodes the proteins in an organism. The RNA 

polymerase is an essential functional 

component present in all the organisms which 

plays a role in transcription of genetic material 

in to the messenger RNA and the translation of 

these generated mRNA is carried out by the 

ribosome. 
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ABSTRACT 

The ribosome, one of the largest molecular machines in living cells, is in charge of protein 

synthesis. Ribosomes are the birth place of proteins in living cells. It is an RNA-protein complex. 

The ribosomal small subunit is mainly responsible for decoding the genetic information carried 

on messenger RNA (mRNA) while the large subunit elongates the nascent protein chain by 

catalyzing the formation of peptide bonds. During the synthesis the nascent chain migrates 

through a tunnel in the large subunit, the so-called exit tunnel, to exit the ribosome. For a long 

time the exit tunnel was considered to be a passive conduction channel for the nascent protein to 

migrate through, however, an increasing number of studies have shown that the exit tunnel is 

actually involved in many co-translational activities of the nascent peptides, such as folding of 

the nascent chain inside the exit tunnel, translation stalling of certain peptide and antibiotic 

binding and resistance. Detailed insights into the architecture of the tunnel have been obtained 

from X-ray and cryo-EM structures of prokaryotic and eukaryotic ribosomes. Protein biogenesis 

factors are thought to bind to NC not before they exit the ribosomal exit tunnel, one such factor 

involvement with NC is the Nascent Chain Association Complex. This review provides an insight 

and understanding about the functionality of the Ribosome tunnel and its association with the 

nascent peptide chain. 
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The Ribosomes are ribonucleoprotein 

complexes which consist of two different 

subunits: one large and one small. These 

subunits are composed of protein termed as 

ribosomal proteins and ribosomal rRNA 

(STRUCTURE AND FUNCTION OF THE 

RIBOSOME, 2009). These ribosomal proteins 

and rRNA differ in composition for both the 

subunits also these subunits are different in 

composition for eukaryotes and prokaryotes 

(Fig. 1). Even with the difference in their 

compositions for both the domains of life its 

function remains same i.e. in the process of 

amino acid peptide chain synthesis. The 

polypeptide synthesis happens through the 

process of translation from the mRNA which 

comprises of three following ways: Initiation, 

Elongation and Termination. The mRNA goes 

and sits at the binding site of the ribosome and 

the synthesis of the peptide chain starts. The 

binding site consists of three sites the E, P and 

A site. 

 

 

 
Fig 1: Diagrammatic representation of components of the Ribosome 

 

Formation of the Peptide bond: 

The molecular principles of how the ribosome 

catalyses peptide bond formation at the PTC 

by transferring the nascent peptide from the P-

site peptidyl-tRNA to the A-site aminoacyl-

tRNA were rapidly grasped when the 50S 

ribosomal subunit structure from H. 

marismortui was acquired at high resolution. 

Steitz, Moore, and collaborators' previously 

published structures of the 50S subunits were 

used in 2005 to develop a mechanistic model 

for peptidyl-transfer using a molecular 

computational approach. The authors proposed 

a network of hydrogen bonds that would 

endure through the transition state of peptide-

bond formation and be pre-organized in the 

ground state of the peptidyl-transfer reaction. 

It was empirically demonstrated that the pre-

existing network of hydrogen bonds explains 

why bond production on the ribosome is 

entropy-driven rather than enthalpy-driven. 

The extra proton that forms on the amino 

group of the A-site aminoacyl-tRNA on the 

ester bond of the P-site tRNA is removed by 

the 2'OH of the peptide bond, which is a 

restricted component of a proton shuttling 

pathway. The proposed method attributed the 

network of H-bonds that significantly lowers 

the activation free energy in comparison to the 

ground state in ribosome catalysed peptide 

bond formation to ribosomal RNA, namely 

2'OH of A2451, as well as a number of water 

molecules. The 50S subunit complexes with 

improved resolution (~2.5Å) of the features in 

A-site Binding of incoming aminoacyl- tRNA 

P-site Location of peptidyl-tRNA with the associated nascent polypeptide chain 

E-site Deacylated tRNA from P-site binds to this site before leaving the ribosome 
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the peptidyl-transfer centre were presented by 

Steitz and colleagues in the same year. 

 The proton-shuttle function of 2'OH of 

A76 in P-site bound peptidyl-tRNA as well as 

the network of H-bonds involving 23S rRNA 

bases and water molecules were both 

confirmed by this crystallographic feat. In 

conclusion, it can be said that Steitz and 

colleagues' 50S subunit structures, with the 

publication serving as the crown gem, played a 

crucial role in elucidating the mechanism by 

which ribosomes catalyse peptide bonding. 

The Ribosome Exit Tunnel: 

The ribosome, a huge macromolecular 

particle, aids in the synthesis of the NCs, or 

nascent polypeptide chains, from amino acids. 

The peptide bonds that are created in the 

peptidyl-transferase centre (PTC), which is 

situated in a cleft on the big ribosomal inter-

subunit site, bind the amino acids together 

(Simonovi & Steitz, 2009). The nascent 

polypeptide interacts with antibodies first on 

the side of the large subunit that is opposite its 

subunit interface, according to a paper from 

1982 by Bernabeu and Lake. These kinds of 

findings prompted additional speculations 

about the existence of a tunnel large enough to 

hold a developing polypeptide within the 

larger ribosomal subunit. In 1995, a cryo 

electron microscopic research unequivocally 

demonstrated the existence of such an escape 

tunnel (Frank et al., 1995). Numerous journals 

have up to this point mentioned the existence 

of this exit tunnel in their high resolution 

crystal structures of the big ribosomal subunit 

and 70S ribosome (Ban et al., 2000; Harms et 

al., 2000; & Schuwirth et al., 2001). 

Furthermore, a comparative cross-linking 

study using the ribosome of E. coli has 

demonstrated that as peptide length increases, 

the V, IV, II, III, and II domains of the 23S 

rRNA, which together form the ribosome 

tunnel trance and the walls, become 

increasingly and preferentially cross linked 

with the nascent peptide. In bacteria, the 

tunnel is mainly made up of conserved 

sections of the 23S rRNA and the ribosomal 

protein segments L4, L22, and L23. In 

eukaryotes, the area corresponding to the 

bacteria-specific moieties of L23 overlaps with 

protein L39e (Kramer et al., 2009). These 

observations results in accepting the fact that 

the polypeptide after synthesis do pass through 

the tunnel (Stade et al., 1994; & Jha & Komar, 

2011). The ribosomal tunnel is primarily made 

of ribosomal RNA (rRNA), but some non-

globular ribosomal proteins also contribute to 

its formation, according to studies on the X-

ray structures of bacterial and archaeal 

ribosomal particles (Nissen et al., 2000; Harms 

et al., 2001; Schuwirth et al., 2005; Selmer et 

al., 2006; Lu et al., & Tenson & Ehrenberg, 

2002). The tunnel is between 80 and 100 feet 

long, with a diameter that ranges from 10 feet 

at its narrowest point to 20 feet at its widest 

point (the exit location) (Wilson & Beckmann, 

2011). Proteins L4 and L22 produce a tunnel 

constriction in the 50S and 60S subunits that is 

30 from the peptidyl transferase centre. 

Because of insertions in protein L4, the 

constriction is narrower in eukaryotes (Fig 2) 

(Javed et al., 2017). Although it is unknown 

what function these changes between bacteria 

and eukaryotes serve, it has been hypothesized 

that the smaller constriction in eukaryotes may 

prevent some macrolide antibiotics from 

reaching the peptidyl transferase core. It is 

believed that the tunnel is how these 

antibiotics are transported to the binding site. 

Genetic research has demonstrated that adding 

six amino acids to E. coli's L4 loop confers on 

bacterial ribosomes a resistance to larger-size 

macrolides that is comparable to that of 

eukaryotes (Kramer et al., 2009; & Wilson & 

Beckmann, 2011). A polypeptide chain of 30 

to 40 amino acids can fit in the tunnel at once 

(Jha & Komar, 2011). Compact peptide 

structure formation is not possible in the 

tunnel (Lu & Deutsch, 2005). According to a 

report written by Khanh and colleagues, some 

of the tunnel's major components must be well 

conserved across species since it serves some 

important functions (Khanh et al., 2019). 

Additionally, it has been claimed that there are 
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likely significant variations in the exit tunnel 

structure, with the most extreme examples 

having been seen in mitochondria (Davis et al., 

2014; & Chiba, 2014), as well as differences in 

the translational and co-translational 

mechanisms between eukarya and bacteria 

(Khanh et al., 2019) (Amunts et al., 2014).

 

 
Fig 2:  The Cryo- EM visualization of the Peptide Exit tunnel and the nascent polypeptide  

chain (Javed et al., 2017) 

 

Features and essentiality of the exit tunnel: 

The tunnel being uneven in shape and having a 

compact dimensions it has a multifunctional 

role in deciding the fate of the nascent 

polypeptide chain. Originally it was thought 

that the tunnel has no chemical properties 

which are capable of facilitating its 

involvement with the NC but with the progress 

in studies on the exit tunnel numerous 

evidences have been gathered about its diverse 

functional role and its chemical nature 

(Zimmerman et al., 2014). Earlier it was 

widely believed that the ribosome tunnel is 

merely a gateway for the passage of the 

nascent chain however later it was revealed 

with many evidences that it actively 

participates in the nascent chain folding (Jha & 

Komar, 2011), translation arrest and cellular 

signaling (Zimmerman et al., 2014). Although 

tertiary folding of whole protein domains such 

as folding domains as large as IgG domain is 

not feasible in the exit tunnel due to its 

constrict structure the tunnel it is feasible for 

the formation of small elementary units such 

as alpha-helixes (Voss et al., 2006). Cryo-EM 

studies have been used to directly visualize 

NCs within the ribosomal tunnel including 

NCs with high alpha-helical propensity 

(Wilson & Beckmann, 2011). Studies of 

Fluorescence resonance energy transfer 

(FRET) has shown that a TM signal anchor 

(SA) sequence is compacted in a manner 

consistent with alpha-helix formation in all 

regions of the ribosomal tunnel (Woolhead et 

al., 2004). Also in the same study it was seen 

that upon exiting the tunnel the compaction of 

TM NC was lost which clearly indicated that 

the tunnel has a vital role play in the alpha 

helix conformation stabilization. Also the 

formation of these helixes inside the tunnel is 

different for different NCs (Wilson & 

Beckmann, 2011). Another important job of 

the ribosome tunnel is in mediating 

translational regulation. Many of the leader 

peptides prompt translational stalling to 

regulate translation of some important 

downstream genes (Lovett & Rogers, 1996; 

Tenson & Ehrenberg, 2002; & Wilson & 

Beckmann, 2011). Studies on chief peptides 

like tnaC, secM, mifM, ermCL, and catA86L 

have been carried out understand this 

regulation process like for example stalling 

during translation of the tnaC peptide results 

in blocking the Rho transcription terminator 

binding sites by the ribosome leading to 

translation of the downstream tnaAB genes 

(Wilson & Beckmann, 2011). Wilson and 

Beckmann have also stated that all this stalling 
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of these major peptides requires a specific 

interaction between some specific residues 

present in the nascent chain and some 

components of the exit tunnel. Insight into the 

eccentric conformations and pathways of the 

nascent chain regulation in the ribosome 

tunnel as well as the interactions of the NCs 

and the ribosome tunnel walls have been done 

by studying the Cryo-EM structure of the 

eukaryotic ribosome as well the bacterial 

ribosome stalled during translation of peptide 

like AAP & CMV (Bhushan et al., 2010), 

TnaC (Seidelt et al., 2009), SecM (Bhushan et 

al., 2011), tnaC (Stel et al., 2021) and VemP 

(Kolář et al., 2022). Lastly one more function 

of the ribosome exit tunnel is antibiotic 

binding and resistance. The exit tunnel 

consists of high affinity pocket for antibiotics 

of macrolide, ketolide and streptograminB 

families. These pockets are situated at the 

upper portion of the tunnel i.e., below the PTC 

and above the construction site of the tunnel 

(Figure 3) (Yonath, 2005). Studies have shown 

that the Macrolides and ketolides group of 

antibodies bind to this high-affinity pocket 

either in vacant or to translating ribosomes, 

carrying short nascent peptide (Andersson & 

Kurland, 1987; Tenson et al., 2003; & Allen, 

2002). The central macrolactone ring of these 

drugs forms hydrophobic interactions with the 

rRNA residues 2057, 2611, and 2058 that form 

the tunnel wall on the side of the PTC A site 

(Kannan & Mankin, 2011). Inhibition of 

protein synthesis by the macrolide antibiotics 

is done by obstructing the growth of the 

nascent peptide chain.  

 

CONCLUSION 

The development of the peptide chain through 

the exit tunnel is stopped as the developing 

peptide approaches the location of drug 

interaction after the synthesis of the first few 

amino acids, and the tRNA separates from the 

ribosome (Otaka & Kaji, 1975; Menninger & 

Otto, 1982; & Kannan & Mankin, 2011). The 

tRNA's rate of dissociation is dependent on its 

length, sequence, and interaction with the 

peptide exit tunnel, whereas the drug's rate 

depends on both of its structural and binding 

specificities. 
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